

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

4722/01

Core Mathematics 2
THURSDAY 7 JUNE 2007

Morning

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

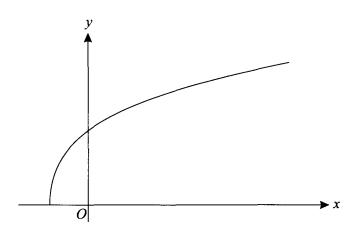
© OCR 2007 [D/102/2694]

OCR is an exempt Charity

[Turn over

1 A geometric progression u_1, u_2, u_3, \ldots is defined by

$$u_1 = 15$$
 and $u_{n+1} = 0.8u_n$ for $n \ge 1$.


(i) Write down the values of
$$u_2$$
, u_3 and u_4 . [2]

(ii) Find
$$\sum_{n=1}^{20} u_n$$
. [3]

2 Expand
$$\left(x + \frac{2}{x}\right)^4$$
 completely, simplifying the terms. [5]

3 Use logarithms to solve the equation $3^{2x+1} = 5^{200}$, giving the value of x correct to 3 significant figures. [5]

4

The diagram shows the curve $y = \sqrt{4x + 1}$.

- (i) Use the trapezium rule, with strips of width 0.5, to find an approximate value for the area of the region bounded by the curve $y = \sqrt{4x+1}$, the x-axis, and the lines x = 1 and x = 3. Give your answer correct to 3 significant figures.
- (ii) State with a reason whether this approximation is an under-estimate or an over-estimate. [2]
- 5 (i) Show that the equation

$$3\cos^2\theta = \sin\theta + 1$$

can be expressed in the form

$$3\sin^2\theta + \sin\theta - 2 = 0.$$
 [2]

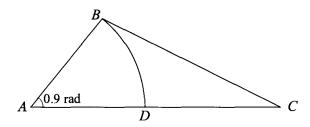
(ii) Hence solve the equation

$$3\cos^2\theta=\sin\theta+1,$$

giving all values of θ between 0° and 360° .

[5]

© OCR 2007


6 (a) (i) Find
$$\int x(x^2-4) dx$$
. [3]

(ii) Hence evaluate
$$\int_{1}^{6} x(x^2 - 4) dx.$$
 [2]

(b) Find
$$\int \frac{6}{x^3} dx$$
. [3]

- 7 (a) In an arithmetic progression, the first term is 12 and the sum of the first 70 terms is 12 915. Find the common difference. [4]
 - (b) In a geometric progression, the second term is -4 and the sum to infinity is 9. Find the common ratio. [7]

8

The diagram shows a triangle ABC, where angle BAC is 0.9 radians. BAD is a sector of the circle with centre A and radius AB.

- (i) The area of the sector BAD is 16.2 cm^2 . Show that the length of AB is 6 cm. [2]
- (ii) The area of triangle ABC is twice the area of sector BAD. Find the length of AC. [3]
- (iii) Find the perimeter of the region BCD. [6]
- **9** The polynomial f(x) is given by

$$f(x) = x^3 + 6x^2 + x - 4.$$

- (i) (a) Show that (x + 1) is a factor of f(x). [1]
 - (b) Hence find the exact roots of the equation f(x) = 0. [6]
- (ii) (a) Show that the equation

$$2\log_2(x+3) + \log_2 x - \log_2(4x+2) = 1$$

can be written in the form f(x) = 0.

[5]

(b) Explain why the equation

$$2\log_2(x+3) + \log_2 x - \log_2(4x+2) = 1$$

has only one real root and state the exact value of this root.

[2]

1	(i) $u_2 = 12$	B1	State $u_2 = 12$
	$u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1√ 2	Correct u_3 and u_4 from their u_2
	(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$	M1	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19
	(n) $S_{20} = \frac{1}{1 - 0.8}$ = 74.1	A1	Obtain correct unsimplified expression
	= /4.1	A1 3	Obtain 74.1 or better
	OR		
		M1	List all 20 terms of GP
		A2	Obtain 74.1
		5	
2	$(x+\frac{2}{x})^4 = x^4 + 4x^3(\frac{2}{x}) + 6x^2(\frac{2}{x})^2 + 4x(\frac{2}{x})^3 + (\frac{2}{x})^4$	M1*	Attempt expansion, using powers of x and $^2/_x$ (or
_	$(x \mid x) = x + 4x (x) + 6x (x) + 4x(x) + (x)$	IVII	the two terms in their bracket), to get at least 4
			terms
		M1*	Use binomial coefficients of 1, 4, 6, 4, 1
		A1dep*	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term
	$=x^4+8x^2+24+\frac{32}{x^2}+\frac{16}{x^4}$ (or equiv)	A1 5	Obtain a fully correct, simplified, expansion
	$-x + 6x + 24 + \frac{1}{x^2} + \frac{1}{x^4} $ (or equiv) OR		Colum a runy correct, simplifica, expansion
	OK	M1*	Attempt expansion using all four brackets
		M1*	Obtain expansion containing the correct 5 powers
			only (could be unsimplified powers eg x^3 . x^{-1})
		A1dep*	Obtain two correct, simplified, terms
		A1	Obtain a further one correct, simplified, term
		A1	Obtain a fully correct, simplified, expansion
		5	
3	$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
	$(2x+1)\log 3 = 200\log 5$	M1	Drop power on at least one side
		A1	Obtain correct linear equation (now containing no
	200 log 5		powers)
		3 - 4	
	$2x + 1 = \frac{200 \log 5}{\log 3}$	M1	Attempt solution of linear equation
OP	$2x + 1 = \frac{200 \log 3}{\log 3}$ $x = 146$	M1 A1 5	Attempt solution of linear equation Obtain $x = 146$, or better
OR	x = 146		Obtain $x = 146$, or better
OR		A1 5 M1 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
<i>OR</i> 4	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 1.5, 2$
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1 5	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1 M1 A1 M1 M1 M1 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only
	$x = 146$ $(2x+1) = \log_3 5^{200}$ $2x+1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$	A1 5 M1 M1 A1 S M1 M1 A1 A1 A1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94	A1 5 M1 M1 A1 M1 A1 M1 A1 A1 M1 A1 4	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4)
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate	A1 5 M1 M1 A1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is $0/4$) State underestimate
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) $\operatorname{area} \approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimateas the tops of the trapezia are below	A1 5 M1 M1 A1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4)
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate	A1 5 M1 M1 A1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4) State underestimate

5	(i)	$3(1-\sin^2\theta) = \sin\theta + 1$ $3-3\sin^2\theta = \sin\theta + 1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
		$3\sin^2\theta + \sin\theta - 2 = 0$	A1	2	Show given equation correctly
	(ii)	$(3\sin\theta - 2)(\sin\theta + 1) = 0$	M1		Attempt to solve quadratic equation in $\sin \theta$
		$\sin \theta = \frac{2}{3}$ or -1	A1		Both values of $\sin\theta$ correct
		$\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1		Correct answer of 270°
			A1 A1√	5	Correct answer of 42° For correct non-principal value answer, following
					their first value of θ in the required range
					(any extra values for θ in required range is max $4/5$)
					(radians is max 4/5)
					SR: answer only (or no supporting method) is B1
				7	for 42° , $B1$ for 138° , $B1$ for 270°
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
			A1		Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if \int or dx still present)
			B1	3	+c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_1^6$	M1		Use limits correctly in integration attempt (ie F(6)
					-F(1))
		$= (324 - 72) - (\frac{1}{4} - 2)$ $= 253\frac{3}{4}$	A1	2	Obtain 253¾ (answer only is M0A0)
	(b)	$\int 6x^{-3} dx = -3x^{-2} + c$	В1		Use of $\frac{1}{x^3} = x^{-3}$
			M1		Obtain integral of the form kx^{-2}
			A1	3	Obtain correct $-3x^{-2}$ (+ c) (A0 if \int or dx still present, but only penalise once
					in question)
				8	
7	(a)	$S_{70} = \frac{70}{2} \left\{ (2 \times 12) + (70 - 1)d \right\}$	M1		Attempt S_{70}
		35(24+69d) = 12915	A1 M1		Obtain correct unsimplified expression Equate attempt at S_{70} to 12915, and attempt to find
		33(24 + 674) - 12713	1011		d
OR		<i>d</i> = 5	A1	4	Obtain $d = 5$
OIL		$\frac{70}{2}$ {12 + <i>l</i> } = 12915	M1		Attempt to find d by first equating $^{n}/_{2}(a+l)$ to
		. 255			12915
		l = 357 $12 + 69d = 357$	A1 M1		Obtain $l = 357$ Equate u_{70} to l
		d = 5	A1		Obtain $d = 5$
	(b)	ar = -4	В1		Correct statement for second term
	. ,	$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{a})$	M1		Attempt to eliminate either a or r
		$9r^2 - 9r - 4 = 0 a^2 - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic
		(2n-4)(2n+1)=0 $(2n+2)(2n+1)=0$	1 1 1		denominators/brackets)
		(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	M1		Attempt solution of three term quadratic equation
		$r = \frac{4}{3}$, $r = -\frac{1}{3}$ $a = -3$, $a = 12$	A1	_	Obtain at least $r = -\frac{1}{3}$ (from correct working only)
	Heno	$ce r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
				11	SR: answer only / T&I is B2 only

8	(i)	$\frac{1}{2} \times 1$	$4B^2 \times 0.9 = 16.2$	M1		Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$
	· /	2	$AB^2 = 36 \Rightarrow AB = 6$	A1 16.2	2 (2)	Confirm $AB = 6$ cm (or verify $\frac{1}{2}$ x 6^2 x $0.9 =$
	(ii)	-	$6 \times AC \times \sin 0.9 = 32.4$ = 13.8 cm	M1* M1dep	* 3	Use $\Delta = \frac{1}{2}bc \sin A$, or equiv Equate attempt at area to 32.4 Obtain $AC = 13.8$ cm, or better
	(iii)	ВС	cos BC = 11.1 cm	M1 A1√ A1		Attempt use of correct cosine formula in $\triangle ABC$ Correct unsimplified equation, from their AC Obtain $BC = 11.1$ cm, or anything that rounds to
		BD	= $6 \times 0.9 = 5.4 \text{ cm}$ ce perimeter = $11.1 + 5.4 + (13.8 - 6)$ = 24.3 cm	B1 M1	6	this State $BD = 5.4$ cm (seen anywhere in question) Attempt perimeter of region BCD Obtain 24.3 cm, or anything that rounds to this
)	(i)	(a)	f(-1) = -1 + 6 - 1 - 4 = 0	B1	1	Confirm $f(-1) = 0$, through any method
		(b)	x = -1 $f(x) = (x+1)(x^2 + 5x - 4)$	B1 M1 A1 A1		State $x = -1$ at any point Attempt complete division by $(x + 1)$, or equiv Obtain $x^2 + 5x + k$ Obtain completely correct quotient
			$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1		Attempt use of quadratic formula, or equiv, find roots
			$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1	6	Obtain $\frac{1}{2} \left(-5 \pm \sqrt{41} \right)$
	(ii)	(a)	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1 M1		State or imply that $2\log (x + 3) = \log (x + 3)^2$ Add or subtract two, or more, of their algebraic logs correctly
			$\log_2\left(\frac{(x+3)^2x}{4x+2}\right) = 1$	A1		Obtain correct equation (or any equivalent, with single term on each side)
			$\frac{(x+3)^2 x}{4x+2} = 2$ $(x^2 + 6x + 9)x = 8x + 4$	В1		Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
			$x^3 + 6x^2 + x - 4 = 0$	A1	5	Confirm given equation correctly
		(b)	$x > 0$, otherwise $\log_2 x$ is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√der	p*	State or imply that $\log x$ only defined for $x > 0$ State $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$ (or $x = 0.7$) only, following their
				14	2	single positive root in (i)(b)